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CORRELATIONS AND BEAM NOISE

Joseph J. Bisognano
Continuous Electron Beam Accelerator Facility
12070 Jefferson Avenue
Newport News, Virginia 23606

1. Introduction

The time-varying currents generated by a particle beam in a storage ring produce rf elec-
tromagnetic fields which can be intercepted by a pickup structure for beam diagnostics. The
temporal variation of the current has several sources: macroscopic bunching, collective oscilla-
tions, and the underlying discrete nature of a particle beam. This discreteness at the microscopic
level provides the high-frequency structure necessary for the production of Schottky noise, which
is readily observable at rf frequencies, and for the emission of incoherent synchrotron radiation
at yet higher frequencies. It is not, however, the discreteness alone, but rather the combination
of discreteness and randomness in position of the particles relative to each other that is respon-
sible for the typical spectral character of the noise. If this randomness is not complete—that
is, if the particle positions are correlated—the rf signal can be significantly modified and as a
function of frequency can be enhanced or suppressed. It is the nature of these correlations and
their detailed effects on Schottky noise that are the concern of this paper.

The development of microscopic correlations is driven by interaction between the beam
particles. A primary example of such an interaction is the long-range Coulomb force for a
collection of many charged particles. This system, of course, is the area of study of plasma
physics where many powerful physical concepts and mathematical tools have been developed.
One such notion is that of Debye screening, where the field of any test charge is shielded at
long distances by the redistribution of neighboring particles in response to the Coulomb field
of that test charge. This microscopic ordering of the particles in space (in other words, the
development of correlations between the particle positions) does not change the macroscopic
average distribution. Yet the dynamics of the plasma and the interparticle coupling are strongly
affected.

An accelerator beam is presented with a considerably more complicated eleciromagnetic en-
vironment than a simple, unbounded plasma. Interaction between the beam particles can arise
through coupling to the vacuum chamber wall and through the electromagnetic fields generated
by beam excitation of cavities, bellows, and other discontinuities. In addition to these passive
structures, active feedback systems using localized pickups and kickers for damping instabilities
and cooling stochastically can induce coupling between particles, and given electronic time de-
lays, dissipative self-interaction. Although the time and position (or frequency and wavenumber)



dependence of these interactions is quite different from the free-space Coulomb interaction, they
share with it and with each other a long-range character because of the limited bandwidth of
rf structures. Therefore, these systems can be analyzed with many of the tools and techniques
of plasma physics. On the other hand, these forces do differ from free-space electromagnetics in
having dissipation, less singular small-distance behavior (faster high-frequency rolloff), and the
lack of translation invariance (localized structures).

It is the intent of this paper to present (with the clear exception of Section 5) a heuristic
view of correlation phenomena in particle beams, and to stress the generality of the analysis
to most long-range particle interactions of moderate strength. The reader is urged to refer to
earlier works in this accelerator school series. Specifically, Bisognano and Leemann [1] presents
a generalized BBGKY approach for dissipative systems with applications to stochastic cool-
ing. Bisognano [2] presents some general concepts of noise theory and stochastic processes.
Chattopadhyay [3] is also of considerable interest.

2. Basics of Schottky Noise

The current produced by a point particle has a flat spectral content extending to infinite
frequency. In a storage ring this current repeats indefinitely, producing at any location a train
of pulses. There can be constructive or destructive interference between the spectra of these
pulses (because of the time delay between them) which yields a variation in the overall spectrum
observed. We proceed with a detailed analysis of tranverse Schottky noise; the description of
the longitudinal noise is described elsewhere [1, 2], and follows a similar chain of reasoning.

The dipole current produced at a pickup located at a particular azimuth in a storage ring
by a particle £ undergoing betatron oscillations is of the form

+co
L(t)=ea; Y cos(viwit + ¢;) 6 (t — to; — nTy) (2-1)
n=—ooo
where f; = % = 31,.— is the revolution frequency, a; is the oscillation amplitude, and v; is the

betatron tune. The parameters ¢; and to; establish an arbitrary phase and an arbitrary transit
time, respectively, for the particle. On using the identity

+o0 +oco i
Yo st—nT) = f; Y einest , (2-2)

which follows from the periodic nature of the delta-function train, we have

+co
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+ n=—o

The point nature of the source is manifest in the extension of the spectrum to infinity; the
periodic nature of the source is responsible for the line structure at harmonics (n £ 1)wi . We
have implicitly assumed that the a; and f; are independent of time.



Now consider a collection of N particles in the ring. We sum Eq. {2-3) over the particle
label ¢ and find that the total dipole current is

N +oo
T4 (t) = EZ Z ff"_;i eLiviwit c:}::¢.- e'"“’-‘(‘-‘o") (2—4)
=1 =+

n=--oc

For each harmonic n the dipole current at the pickup is composed of two betatron sidebands
corresponding to the range of (n + v;)w; . It is possible for the sidebands to overlap (Schottky
band overlap) if (n + vi)wi = (m % v;)w; for some § and 7, and (m+ ) # (n £ v).

3. The Power Spectrum of Transverse Schottky Noise

The dipole current will produce a signal in a transverse pickup which can be amplified and
processed. This signal will generally be of the form

N +oo r ' . .
5(t) = ZZ Z 2’2'_)‘-', G (nw‘. + u,-w.-) ci(ﬂ:l:lf;)w.-t c:i:sda; einwitos (3__1)
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efter transients have settled down, and where G(Q) represents the electronic transfer character
of the diagnostic system at electronic frequency (that is, the Fourier conjugate of time) .
Typically G will roll off rapidly at high frequencies and the sum will converge absolutely. The
bandwidth of the gain G can cover several Schottky bands or can be a fraction of a gingle band.
For example, if the structure of a single Schottky sideband is desired, the bandwidth of G must
be small compared to the width of that Schottky band. Given this noise source a(t), we can
study its power spectrum with Fourier analysis. The duration of & measurement is clearly finite,
say 2T'. We define the average power in this noise source by

1 +T

w= g | dls)P (3-2)

On inserting Eq. (3-1) into Eq. (3-2) and performing the integration we have

Py = z Z Z Z E Z G'(nw,- + u.-w.-) G* (me' 42 ev,-w,-)
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((nwi * vwi) — (mw; @W:')) T

x % e2aa;f;f; eX3%i o®Ob; ginuitos g—imusto;
where the + and @6 sums are independent.

Note that for finite times T', frequencies within 1 /T can interfere strongly with each other
through the sine factor. This is an example of the uncertainty principle for Fourier transforms.
For this argument we assume that (bandwidth of G) > #. For any finite sampling time the



Schottky power can be strongly affected by particle-to-particle correlations which can produce
interference through the phase factors.

As will be seen in Section 5, the correlations induced through the beam environment ac-
tually exhibit quite singular (delta-function-like) behavior in frequency. In other words, if we
observe the beam after transients have settled down, the beam has always had longer to respond
to particle-particle interactions than we have had to observe them. Thus, the ability of the beam
to produce small frequency resolution correlations in general exceeds the experimenter’s mea-
surement resolution. That is, we expect the bulk of correlations to occur for frequency differences

much less than %

A few examples of the effects of correlation are now in order. First, consider the case of
statistically independent particles in a uniform, coasting beam. The particle positions are totally
random with respect to each other, and all interparticle phases are uncorrelated. When averaged
over independent random distributions the cross terms of the sum in Eq. (3-3) vanish, both be-
tween coordinates of different particles and between coordinates of the same particle for different
n+ v and m =+ v (since w;ty; extends over all phases), and the double sum over 1 and j collapses
to a single sum. The power is found to be proportional to the number of particles with betatron
harmonics in the bandpass of the gain G. For (bandwidth G) < (Schottky bandwidth}, we
have a determination of the single-particle frequency distribution. In other words, the Schottky
noise distribution mimics the single-particle revolution frequency distribution. Second, consider
a coherent betatron oscillation on a coasting beam and assume that the bandwidth of G covers
a single sideband. Suppose the beam is offset initially at ¢ = —T with a betatron phase ¢ = ng
where the angle ¢ is measured with respect to the pickup structure. For T <« (spread in nw;) !
this phase will approximately cancel the nw;to; term for the full duration of the integration
in Eq. (3-2}). The signal of all particles will add coherently and the resultant power will be
proportional to the square of the number of particles within the frequency resolution of the
diagnostic system. Without self-interaction, this coherence would vanish if instead T » (spread
in nw;}~! because the phase cancellation will be degraded by the frequency differences. This
will be discussed more fully in subsequent sections. Third, consider a short bunch oscillating in
a rigid dipole oscillation. The betatron phases are identical and for small enough n such that
all differences n(¢; — ¢;) < 2, the particle signals are again essentially in phase, and their
resultant signal for a single sideband is again proportional to the square of the number of parti-
cles. At frequencies sufficiently high so that n(¢; — ¢5) 2 2, the enhanced signal disappears as
the phase differences average away the cross terms. Also note that for ng; — me; < 27 there
can be interference effects between neighboring bands, if they fall within the bandwidth of G.
This is the result of the bunching; in more sophisticated terms, bunched-beam Schottky noise
is nonstationary {it depends on time; sometimes it’s on, sometimes it’s off). For nonstationary
noise, the noise amplitudes in the neighborhood of two different frequencies are not statistically
independent.

In each of the last two cases, the signal was enhanced in some band due to an ordering (cor-
relations) of the particle positions at a macroscopic level. Schottky noise can also be diminished



* from its random-phase value and the correlation can be microscopic in character. Clearly, from
Eq. (3-3), for Schottky noise suppression the sum of the betatron oscillations of the particles of
the sample must be near zero; that is, the average transverse position of the sample must be
small.

Consider a sample of N particles taken from a distribution with average transverse position
zero and rms position ¢. From random fluctuations the average position of the sample will be
distributed with an rms value of 7’? For a relatively large sample of particles, the average
position can be made zero by shifting the individual particle coordinate by a value of order 7'1-;,
which is emall compared to the beam size o for a large number of particles. For such a system,
typical of a centered particle beam in a transport channel, the Schottky signal can be made
to disappear by a microscopic ordering of the particles which does not significantly change the
macroscopic distribution.

Before proceeding with our investigation of Schottky noise suppression, let us take one more
look at Eq. (3-3). Let the N particles be distributed in frequency with a full-width Af} and let
T>» Z’%. Then the sine factor will be negligible except in the unlikely event that two particles
are much closer in frequency than their average spacing. It would appear that after a long enough
time the correlational effects would essentially disappear from the Schottky diagnostic or would
become very susceptible to the fluctuations in particle distribution. The system would be able
to sort itself through frequency differences. Section 5 describes correlational effects through a
dielectric model; that is, the shielding a test charge experiences due to correlations with other
beam particles will be approximated by polarization of a continuous medium. Such & model
is at the heart of much of plasma theory. How can this continuum model be reconciled with
the discreteness which should be apparent after long times? The answer lies in the stability of
the revolution frequency distribution at the microscopic level. For example, consider the action
of stochastic cooling, the damping of betatron oscillations or momentum spread of a particle
beam by a feedback system. In computer modeling of transverse stochastic cooling systems
with randomly distributed but fixed revolution frequencies, cooling rates are indeed found to
degrade after times long enough to resolve the fine structure of the frequency distribution. This
degradation is seen to depend on the details of frequency differences at the particle-to-particle
level. When a small jitter in longitudinal frequency is added to the model, this effect disappears.
Modeling of longitudinal cooling does not exhibit this problem because of the implicit jitter
introduced in the process of diminishing energy spread. When these effects are scaled to actual
accelerator systems, energy stability of the order of electron volts for tens of seconds would be
required in a GeV beam being cooled at a rate of MeV per second. Such stability is not to be
expected; however, it should be noted that some microscopic jitter is required to justify much
of the successfﬁl mathematical analysis in the literature.

4. A Simple Example

In the previous section we haveseen that an interaction which acts to set the average position
of a sample of the beam to zero can diminish the Schottky noise in a given frequency band. Such



an arrangement is found in transverse dampers for instabilities and stochastic cooling. However,
~ there is a second mechanism that disrupts achievement of this perfect cancellation—the betatron
oscillators do not have exactly the same oscillation frequency. If the average of the oscillators
is set to zero, the frequency difference will cause a reemergence of a nonzero average. Before
proceeding in Section § with a thorough but mathematically complex analysis, we will first study
a simple system that can be solved in closed form to highlight the physical mechanisms and, in
particular, the various time scales involved.

Consider a set of 10 harmonic oscillators with frequencies {}; = 1.001, 1.002, ..y 1.010; i.e.,
the interparticle frequency spacing & is 0.001. Let there be a feedback system which detects the
average £ of the system (this is basically what a transverse stochastic cooling system does by
detection of z and application of the amplified signal a quarter betatron wavelength downstream)
and applies it back on the 10 oscillators. The equations of motion for this system are

10
By + Ofz = —g ) #; foralli (4-1)
=1
We now study this well-defined eigenvalue problem as a function of the parameter g. Assume
solutions are of the form e*¢. Fig.4-1isa plot of the real and positive imaginary values of the ten
eigenfrequencies o for ¢ = 0. There is, of course, a conjugate set of eigenvalues with negative
imaginary parts. Fig. 4-2 corresponds to g = 0.0002. Note that the real part each of the ten
eigenfrequencies is approximately ¢ /2. Each oscillator now has damped motion corresponding
to coupling to its own velocity alone, and the effects of the other oscillators are negligible.
Each oscillator behaves independently of the others because their frequency differences
prevent long-term coherence. As g is further increased this decoherence is no longer in force,
and the eigenvalue plot is deformed (see Figures 4-3 to 4-6) until (Fig. 4-7) at ¢ = 0.005 a single
eigenvalue has split off with a real part of N g/2. This fast rate corresponds to total coherence
of the oscillators in this eigenmode.
The remaining 9 eigenvalues have fallen back to virtually pure imaginary values. The
associated 9 eigenvectors share in one common property:

i ; ~0 (4—2)

i=1

But when condition (4-2) is satisfied

10 2
(z i-.—) %~ 0 (4-3)

=1

and
D didim -y i <0 (4-4)
£y i
The damping system has damped out the average velocites of the system. When the average
velocity is zero, the correction signal goes away, and damping stops. From Eq. (4-4) we see
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that interaction has produced negative correlations among the oscillators’ coordinates. In other
words, the oscillators have acted in concert to shield the individual fields which produced the
damping seen in Fig. 4-2.

Secondly, the correlations became significant only when the damping parameter g > 6. If
we multiply both sides of this relation by the oscillator number N (in this case N = 10), we
have a condition on the development of correlations in terms of macroscopic quantities, N'§, the
total spread in oscillator frequency, and Ng, the coherent damping rate for the average position
of the beam. Thus, correlations induced by a feedback system become significant when

coherent damping rate 2 full frequency spread (4-5)

Finally, if this exericise is repeated with the sign of g changed, essentially the same figures would
be found, only with the sign of the real axis changed. Condition (4-5) is maintained with the
notion of coherent damping rate replaced by coherent growth rate; that is, there would be a
collective oscillation when

coherent growth rate > full frequency spread (4-6)

For damping ¢ (e.g., stochastic cooling), condition (4-5) is termed the “onset of bad mixing.”
The random fields of the particles (the Schottky noise) disappear; there is shielding. This is the



- direct analogue of Debye screening for the long-range Coulomb force. For unstable ¢ (coherent
instabilities), condition (4-6) is described by the notion of Landau damping. “Bad mixing” and
Landau damping are, therefore, manifestations of the same basic physical mechanism; coherence
can occur only if it proceeds at an underlying rate that is fast compared to the frequency spread.

Between the extremes of g = 0.0002 and g = 0.005, there is not total damping of the average
velocity of the particle. The isolated root does not have a full real part of Ng/2 and the nine
other roots retain a significant (but diminished) negative real part. If we were to observe the
average & of the system from turnon, we would first find it at its full random value, which
would then damp to a lower value at a rate corresponding to the isolated eigenvalue. From
there on the system would “cool” slowly. Exactly the same phenomenon is observed when a
stochastic cooling system is turned on. The initial Schottky noise is found to rapidly diminish
(Schottky signal suppression), and then the cooling proceeds slowly to diminish the phase space
area occupied by the beam. When the suppression is large in magnitude, the rate of suppression
is comparable to the coherent damping time of the feedback system.

5. Dielectric Function for a Localized Structure

Now we will proceed with a rather mathematical analysis of the development of correlations
for a transverse damping system. The physical model is a treatment of the beam’s response to
a stimulus as a polarization of a continuous medium. This stimulus may, in fact, be the field of
one of the beam particles itself. Thus, there is a mixed description in terms of both the discrete
and the continuous. The justification of such a mode] is found in Bisognano and Leemann [1].
Two important results are obtained. First, the correlational effects are described by a dielectric
response function and these correlations exhibit delta-function-like singularity as a function of
particle frequencies. Secondly, the scaling of coherent damping and growth to frequency spread
as summarized in conditions (4-5) and (4-8) is found to hold in general.

Consider a simple transverse feedback system consisting of a pickup at 6, and a kicker
downstream at fx. Let both the pickup and kicker be very short (i.e., approximated by é-
functions). Let f(a, 4,8, w,t) be the distribution function for coherent transverse modulations of
the beam (e and ¢ are the usual transverse action-angle variables; z = @ cos ¢,2’ = av sin &)
at azimuth § and revolution frequency w. The distribution [ satisfies the Vlasov equation

of of 6f+F(0 t)sinqbé‘_,r'o_

twag trwzs

Bt EY e 9 0 (5-1)

where F is the transverse kick of the feedback system, and fo is the unperturbed distribution,
which is assumed to have no ¢ dependence. The kick F is typically of the form

F (0,t) = 2x6(0 — 6%) Nf dw'dt'(a'da")d¢’ G(w,t — t')(a’ cos ¢') fa, ¢, 0,0 t") (5-2)

It is assumed that w is independent of time and the tune v is independent of w. Note the
6-function character of the kick and that only values of f at the pickup location enter into the



signal. G models the electrical character of the amplifier. After expanding the ¢ dependence of
fas

+o00
= Z ™} a,0,w,t) e™¢ (5-3)
we have
afim) aftm m) _ F(8,1) 3fo
5 Te—g t tvwm fi™ — o (6m,1 — bm,—1) =—— ol 0 (54)
and

F(0,) = 27 6(8 — 6) N f dw'dt' (o' da) G(“";i‘ t) (@) & L ) )

Only the dipole terms f{*1) are excited. If we now Fourier analyze with respect to  and ¢, we
have

i fE) it wfE & e g2 L Qf—" it6 / dw'da’ x
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(5-6)
where IE:H) is an arbitrary excitation of fgil). Let
& = f a! o fEY
Eq. (5-6) may then be rewritten
iﬂgsil) ~ thw gsi’” + fvw gEil) + %e“a‘ ho(w) x
(5-7)
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Let hy = gi“’ + gg_l). Then we have
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Finally, defining b = ; hn(w’,)e=*"% we have the basic relation

[ dw h(w, D) Glw, Q) =

e 28 —0;) L
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which yields
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where
H(Q) = / dw h{w, D) G(w, )

and I(f) is an arbitrary excitation at frequency . Schottky signal suppression is described by
the denominator of this expression, which we denote by

it(6x~8,)

(a) =1 — % f du %ﬁ"‘lho(m);;(ﬂim_ o (5-12)

The dielectric response function €(f1) describes the polarization of the beam when there is a
localized feedback interaction. Without this particle-particle interaction the response is simply
I(Q2); with the interaction the response is I(f1)/¢(f1). In other words, the single-particle ex-
citation J(f2) is shielded by the other beam particles. Among possible I () is the “random”
initial excitation of a beam particle; i.e., the unshielded Schottky amplitude. Also note that the
€(f1) are expressed in terms of integrals with singular denominators: §0 — 8w + $vw. These are
interpreted in the sense of an initial value Laplace transform problem. As 1 tends to the real
axis there is a delta function contribution, 0 = fw + vw, and a principle-value integral. The
sum over £ may be carried out by standard techniques in [4, 5]

Z e'L(0x—8;) B 27 exp ‘i(ﬂk _ ap) !Q:E,vw!
r -l T w1 — exp 2riOFw)

(5-13)

We note that the sum is discontinuousat (fx—8,) = 0, and we havetaken0 < (0x~0,) < 2n
as the natural physical interpretation. For a finite length pickup and kicker, the £ sum will be
weighted by the Fourier components of the spatial weighting of the kicker and there will be no
discontinuity. However, since §x — 0, is in practice always greater than the angular extent of
the structures, this infinite-sum result should suffice.

The final form of the e-factor becomes

w $ {(Rtvw)
) =1 — —fdw —A:E(—l— ho(w )Z () = (Zp frs)gni:w)

w



This e-factor serves two purposes. First, it describes Schottky signal suppression: Schottky
power at frequency (1 is modified by a factor [¢(f1}|~2. Note that the exponential denominator
of the integral has poles at ({1 + vw) = nw, so that if there is band overlap, there is more
than one singularity entering into the integral. Secondly, the condition €(}) = 0 describes
the thresholds for coherent motion and instability. As we will see in Section 7, the condition
€(1) > 1 for significant polarization (correlations) satisfies condition (4-5), and the €(f2) = 0
condition for instability requires that condition (4-8) be satisfied. As we will now see, for
sufficiently large gain, there is instability even when the phase of the gain appears appropriate
for damping. This effect can be traced to the time delay and §-function character of the kick,
and comes about because of overdamping in a single pass through the feedback system.

Consider a cold beam where ho(w') = §(w’ —w), v = 0.25 (plus any integer), NG =
G ¢')7 (G is real and 7 is the electronic time delay corresponding to (6 — 8,)/w) and there is
a one-quarter betatron wavelength between kicker and pickup. Then Eq. (5-14) reduces to

TG 1 *G 1
e(ﬂ) =1 + . 2w} ] 2%} (5_15)
Vw21+zexp’:,—' Vw2]_—gexp_.'n:_
or _
en) =1 - i’;f - 1 — (5-16)
+ exp 4ni0
Setting this equal to zero for coherent modes, we have
4miQ} 271G
= — 1 —_
exp — (uuﬂ ) (5-17)
and q G
4r 2% ]
— = log(m - 1) + 2mim (5-18)
(m any integer) where we have taken the mth branch of the log function. For 1 — i’:f:f' >0
w 2xG w 1 :
= — - ==+ = = -19
f 47 lo vwi t 2 (m + 2) (5-19)
For small G, this yields
. G w 1
- w - 5-20
b=tigstzm+3) (5-20)

The imaginary part of {I corresponds to damping at G /2vw, with a real part at each betatron
line. This system provides feedback to damp coherent transverse oscillations. However, when

1 - %‘? < 0, that is, when there is large damping gain G
w 2nG wm
“*mgm‘l"f‘f (5-21)




%‘;—: > 2 the argument of the log is greater than 1 and we have growth. The frequencies

mw /2 describe neighboring Schottky bands shifting toward each other. This condition

. For

271G

5> 2 (5-22)

is simply that the coherent damping in one revolution is greater than 2; that is, there is over-
damping of coherent motion. With this full-dispersion expression, Landau damping may be
included. For an arbitrary frequency distribution a numerical integration of (5-14) will yield
precise thresholds of instability. Below the threshold for instability, we may still have eN) <1
in the neighborhood of mw/2. This corresponds to an enhancement of the beam response to
external stimulus—for example, amplifier noise. Such a situation is typical of localized feedback

systems which produce signal suppression at the centers of Schottky bands and enhancement
between Schottky bands.

6. Interparticle Interactions and the Dielectric Response Function

The notion of the dielectric response function is applicable to all sorts of beam interaction.
In Section 5, we have derived the dielectric response for a localized, transverse dipole interac-
tion typical of a feedback system. Other interactions of interest include longitudinal feedback
systems, transverse and longitudinal coupling impedance (including the space-charge compo-
nent), and, of course, the full three-dimensional Coulomb interaction of plasma physics. These
interactions can have either a local or a distributed character. In each of these cases & dielectric
response function can be obtained using techniques similar to that of Section 5. For example,
we have transverse the dipole dielectric response (distributed)

_ NG(w,ﬂ) et t(0n—6;)
ftm = 1 - 2 [aXSED5, ) =gt (6-1)
the longitudinal response (localized)
et 1£(65—0;) -
() = 1 +Z f & NG(z, ) 2 (uf ) (6-2)
the longitudinal response (distributed)
0 (9;. p)
((6,0) = 1 +fdzNG(z, ) 5 @f) S
and the 3-D Coulomb response (nonrelativistic)
1 31(v)
S 6-3
ek,1) = 1 /dvk ~ ﬂ—mk 5y (6-3)
where wp is the plasma frequency: wp = \/ ""—","‘1 for the three-dimensional density n and

particle mass m. For the one-dimensional longitudinal systems, G(x, () describes the rate of
change of energy error z per particle at electronic frequency 02 [1].



These dielectric functions describe the deformation of single-particle fields by correlations
which develop between beam particles through various interactions. The field at frequency (and
spatial harmonic ! or wavenumber k for distributed gystems) is modified by a factor e—!. The
Schottky power density is modified to

P(0)

T

(6-4)

The associated correlation function can also be expressed in terms of the dielectric response
function. Let f; and f; be the one- and two-particle distribution functions, and define the
correlation function g by the decomposition

fa=hh + g

Note that g is a measure of the two-particle correlations that are not due to simple inho-
mogeneities in the one-particle distribution. For example, particles in a bunched beam have
correlated positions even in the limit of no interaction because their azimuth is limited to less
than 27,

For a distributed longitudinal system, the Fourier transforms ge of the correlation are given
by

fdzz G(za,lw2)* ¢ (z1,2,) =G(z1’w1).h§\:l) (5(8,2-01) B 1)

_ 1 8f1 [Glm,twn)|’
|€] 0z l£(£,£w1)|2

As an example, consider the longitudinal Schottky noise generated by a coasting, uniform

(6-5)

Si(zy)

beam with a Gaussian energy distribution of width 0y about some energy Ep. The associ-
ated revolution frequency width o, about revolution frequency wq, corresponding to Eyp, is
nwooz/B2Eq (where 5 is the frequency slip factor). At a harmonic n such that no, < wg there
will be no significant Schottky band overlap between neighboring harmonics. Without beam
self-interaction, the Schottky spectrum P will be given by

O-nwp y?
1 _ n
P(Y) = Jone e 3

in the neighborhood of nwo and is illustrated in Fig. 6-1 with the y-scale normalized to unity.
A machine impedance Z distributed about a storage ring will produce a dielectric response

function of
IﬁgEo Z 1 f iye"yz
e, ) =1 + e d: 66
(6.9) Vs 252 | 9 gma—, (6-6)

for beam current J. At frequencies low compared to the cutoff frequency of the beam pipe, the
space-charge impedance is given by
Z = ikgg (6-7)
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Figure 6-1 Schottky spectrum without space charge.

where go is a constant related to the beam-pipe aspect ratio. Fig. 6-2 illustrates the basic
shape of the Schottky band resulting from the dielectric response corresponding to space charge
(capacitive impedance) in a storage ring below transition. The effect of an inductive impedance
(or space charge above transition) is shown in Fig. 6-3. Fig. 6-4 indicates the Schottky signal
deformation for space charge together with wall resistance below transition. Note that there is
noise enhancement in Fig. 6-4. This is typical of a system marginally below the threshold for a
potential instability. In this case, higher intensity would result in the resistive wall instability.
Fig. 6-3 shows that the beam current is nearing the onset of the so-called “negative mass”
instability.

7. Harmonic Dependence of Dielectric Response and Screening

The dielectric response function depends strongly on frequency and wavenumber. In turn,
the deformation of the signal produced by a perturbation of the beam is a sensitive function
of both frequency and wavenumber. As is clear from expressions (5-12) and (6-2), a localized
structure mixes together all wavenumbers because of the impulsive character of the interaction.
However, note that when there is no Schottky band overlap, a single angular harmonic domi-
nates the expression in the neigborhood of the associated Schottky band. In this situation, the
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Figure 6-2 Schottky spectrum with space charge and below transition.
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Figure 6-3 Schottky spectrum with space charge and above transition,
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Figure 6-4 Schottky spectrum with space charge and wall resistance, below transition.

expression for a distributed system is a good approximation. For the sake of simplicity (and
the immediate analogue to the case of an infinite plasma) we will now focus attention on the ¢
associated with distributed interactions such as wall impedance with a Gaussian energy distri-
bution. At the center of the £th Schottky band, the transverse dipole and longitudinal dielectric
functions for a storage ring are

RNG(wo, lwo)

e=1+ 2vwp L v|o, (1)
2ad NGBy, i [G(zo,tws)
L Zo, Lg

SN/ S (%) 2

|£|V21l’11 OzWp Oz ( )

respectively. For both cases, the magnitude of ¢ is significantly greater than unity when the
magnitude of the ratio of coherent damping (or growth) rate to frequency spread is greater than
unity. This is identical to that found for the simple 10-oscillator system studied in Section 4.
The equivalent expression for the longitudinal dielectric response for an infinite, nonrelativistic
static plasma is [6]

e=1+ -2 (7-3)



where

T
kp = Ine? (7—4)

is the Debye wavenumber for density n and temperature T'. Since this plasma is stationary,

disturbances with wavenumber k are centered about zero frequency. For a beam moving with
velocity vo (angular velocity wp), the frequency is Doppler shifted up to kvg (harmonic &wy).
Thus the beam dielectric functions in Eq. (7-1) and (7-2) are evaluated at fwy. The Debye
wavenumber represents a long wavelength cutoff of fields. The noise produced at wavenumbers
below kp is significantly depressed, and without these fields, the range of the force is effectively
reduced. For the particular form of the Coulomb interaction this corresponds to a potential of
the form

1 o—kolr _
e (7-5)

The dielectric response has transformed the k=2 Coulomb potential to the (k% + k%)~ Yukawa
potential.

There is a clear one-dimensional analogue to the classic Debyescreening. The one-dimensional
Fourier transform of (7-5) is found (7] to be

(¢/2) arctan (k/kp) (7-8)

Note that for large k this expression tends to a constant, and for small & it rises linearly from
the origin. This behavior is remarkably similar to that shown in Eq. (7-1) and (7-2); that is,
for large £ the inverse of the response function tends to unity and for small £ (assuming G is
large enough) the inverse of ¢ is proportional to £. Thus, it appears that these one-dimensional
systems characteristic of storage rings also exhibit something like Debye screening.

Because of size limitations, the interaction offered by an rf structure cannot extend to
arbitrarily small wavelengths. For nonrelativistic motion, the interaction can extend both behind
and in front of the test particle. For relativistic velocities the interaction is only backward,
although with time delays, a feedback system can produce both a forward and a backward
interaction. As an example, consider a finite, imaginary interaction in wavenumber (the one-
dimensional analogue to Coulomb’s law) with a flat response up to a rapid short-wavelength
rolloff. A typical pulse shape is shown in Fig. 7-1 with the interaction asymmetric in space with
respect to the origin. If the low frequencies are cut off with a response function of the form

tp

E(C)=1+-"E,-

(7-7)
analogous to (7-1) and (7-2), we find a pulse shape as shown in Fig. 7-2. First note that the peak
value of the pulse has been diminished. With finite bandwidth, the dielectric response has cut
off a significant portion of the interaction. As is clear from Eq. (7-5), this is not true for truly
infinite bandwidth forces where the short-range interaction is not diminished by the shielding.
Secondly, note that in Fig. 7-2 the long-range tail of the interaction has nearly vanished. This
is the direct analogue of Debye screening. Similar distortions are found for other forms of

interaction.
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Figure 7-1 Pulse from a finite bandwidth reactive interaction without dielectric shielding.
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Figure 7-2 Pulse from a finite bandwidth reactive interaction with dielectric shielding.



For this dielectric picture of & continuous medium to make sense, it is necessary that many
particles be redistributed with respect to the fields of a test particle. For this to be the case, the
Debye screening must not be so severe that only a few particles interact. Thus, for this picture
to be physically consistent it is required that for the 3-D Coulomb interaction 6]

> 1 (7-8)
D
or
(_C.Ek_p) >1 (7—9)

That is, the ratio of the thermal energy to the average interaction strength must be large.

There is a similar small ratio for the one-dimensional storage ring systems which we have
focused on here. From Eq. (7-1) we have significant screening (assuming appropriate phases)
when

N |G (wo, &wo)| -
2vwg b+ v]o, ™

that is, when the collective rate is large compared to the frequency width of the Schottky band.

(7-10)

For infinite bandwidth, constant G, the condition that the number of particles interacting must
be large becomes

N /(R
5 (7) >1 (7-11)
or equivalently (for v negligible)
2o | o q (7-12)
“l7 |G|

In other words, if all harmonics £ < NV are shielded, the interaction is no longer long range with
respect to the particle spacing.

It is left to the reader to derive a similar result from Eq. (7-2). Since the frequency distri-
bution width is a measure of the random motion, i.e., temperature, and G is a measure of the
particle-to-particle interaction strength, we see that conditions (7-9) and (7-12} are physically
analogous. However, there are significant differences. The frequency spread o, is related to the
energy spread (and therefore temperature) by the frequency slip factor y (0, = nwoos/ B2Ey).
For small n, correlations can become very large through (7-10) even for relatively warm beams.
However, as 7 — 0 there is the possibility that (7-12) can be violated. There can be an apparent
lowering of the “effective temperature” due to the n factor, which for a storage ring can be con-
siderably less than unity. Finally, for finite bandwidth G, the maximum £ with significant gain
may satisfy (7-11), and the dielectric picture may have an extended range of validity irrespective
of interaction strength.

8. Impact of Gain Shape and Storage Ring Parameters

The Coulomb interaction (nonrelativistic) induces a three-dimensional Fourier feld amplitude

proportional to

= (8-1)



Other machine impedance and feedback system gains typically have a faster fall-off. The slow
short-wavelength rolloff of Coulomb’s law produces the singular 1/r behavior on integration
over three dimensions. For a feedback system or other resonant interactions with the beam pipe
(the wakefield) the interaction remains finite at short distances. With the Coulomb interaction,
one can have high enough densities so that the closest particles have interaction energies which
exceed the thermal energies; this is the regime of so-called “crystal beams.” Because of the re-
pulsive nature of the force, there is a tendency of particles to avoid close coordinates. Typically,
machine impedances and feedback systems do not exhibit singular high-frequency (short dis-
tance) behavior, nor is the bandwidth sufficient to resolve individual particles. The short-range
phenomena are relatively well behaved.

For a storage ring, a small  appears to effectively reduce the temperature of the system.
Thus, in the limit of 5 going to zero it would appear that the screening could become quite
pronounced to the point of diminishing Coulomb scattering. However, for suffiently small n,
the relaxation from scattering can proceed more rapidly than the development of correlations.
Implicit in the analysis presented is that the correlations develop on a time scale that is rapid
compared to the changes in the single-particle distribution. Recall the simple oscillator model
of Section 4, where the correlations built up N times faster than the single-particle positions
damped. This assumption is implicit in the analysis of Section 5, where the single-particle distri-
bution is assumed constant. The same assumption is implicit in all Debye-screening frameworks.
For a storage ring the time scale for buildup of correlations scales as 1 /n. As n tends to zero,
this time scale becomes arbitrarily large. On the other hand, Coulomb scattering occurs on a
time scale corresponding to the ratio of mean free path to thermal velocity. This scattering in
turn determines the relaxation time of the gross single-particle distribution. For small enough
n it is clear that this relaxation will be proceeding faster than correlation will build up, and
an analysis in terms of transients is required. Similar remarks are appropriate for transverse
motion, where frequency spread due to nonlinearities is usually small compared to the frequency
spread induced by longitudinal motion.

Finally, while the longitudinal and transverse coupling G discussed in this paper describe
the dominant beam interactions in a storage ring, they represent only the first two terms in
an expansion of the forces between any two beam particles. The form of the longitudinal force
assumes no transverse variation, and the form of the transverse force applies to a dipole oscil-
lation (a simple transverse displacement) of the beam. There exist higher moment interactions
together with corresponding response functions which can be important for high-current beams
as found in heavy-ion fusion scenarios. The corresponding collective modes appear as transverse
shape and distribution oscillations. This full set of dielectric response functions is the proper
analogue of the three-dimensional Coulomb e(k, (1) .
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